近日,上海交大2024白菜网址官网大全制冷与低温工程研究所王如竹教授团队在Elsevier旗下期刊Nano Energy发表了题为“Bioinspired Topological Design of Super Hygroscopic Complex for Cost-effective Atmospheric Water Harvesting”的研究性文章。文章聚焦于吸附式空气取水技术,指出了目前限制吸附式空气取水实际发展的瓶颈问题,阐述了优良吸附剂材料所需具备的关键特性,开发了一种具有类丝瓜络的分层多级孔道结构的超吸湿材料,该材料适用于多地区的被动式空气取水,有望解决离网、偏远等欠发达地区的水资源短缺问题。文章第一作者是博士研究生邓芳芳,通讯作者为王如竹教授。
图1. 超吸湿复合物的取水示意图
水资源短缺和人口增加的矛盾日益严峻,发展高效节能、实用安全的取水技术势在必行。吸附式空气取水技术因其不依赖于水源、可利用低品位能源、轻便洁净等优点,引起了国内外学术界的广泛关注。一系列适用于不同应用场景的新型吸附剂材料应运而生。MOF、COF、水凝胶等新型吸附剂具有良好的吸附性能,但由于其高成本、高污染、高能耗和复杂的制备工艺等,空气取水的实际应用受到了限制。因此,在该领域,亟待开发出一种兼顾性能、成本、可持续发展的新型吸附剂材料,以解决空气取水的实用瓶颈。
文章开发一种满足上述多重优势的吸附剂材料,并通过实验室测试和户外取水实验,验证该吸附剂优越的吸附-解吸性能和整体系统的取水潜力。在RH20-80%的宽工况范围内,该吸附剂可实现0.5-2.5 g g-1的稳定吸湿量;同时在1 kW m-2的太阳强度下可实现1.5 kg m-2 h-1的高解吸速率。通过与已有文献对比,文章对该吸附剂进行技术经济性分析,凸显该材料在性能、成本、节能等多方面的综合优势,为空气取水技术的实际应用提供了可能,可为欠发达的干旱地区提供便宜易得的洁净饮用水。